Pressure and Suction Surfaces Redesign for High-Lift Low-Pressure Turbines

Author:

González P.1,Ulizar I.1,Vázquez R.1,Hodson H. P.2

Affiliation:

1. ITP, Industria de Turbo Propulsores, Madrid, Spain

2. Whittle Laboratory, Cambridge University, Cambridge, U.K.

Abstract

Abstract Nowadays there is a big effort toward improving the low-pressure turbine efficiency even to the extent of penalizing other relevant design parameters. LP turbine efficiency influences SFC more than other modules in the engine. Most of the research has been oriented to reduce profile losses, modifying the suction surface, the pressure surface, or the three-dimensional regions of the flow. To date, the pressure surface has received very little attention. The dependence of the profile losses on the behavior of both pressure and suction surfaces has been investigated for the case of a high-lift design that is representative of a modern civil engine LP turbine. The experimental work described in this paper consists of two different sets of experiments: the first one concluded an improved pressure surface definition, and the second set was oriented to achieve further improvement in losses modifying the profile suction surface. Three profiles were designed and tested over a range of conditions. The first profile is a thin-solid design. This profile has a large pressure side separation bubble extending from near the leading edge to midchord. The second profile is a hollow design with the same suction surface as the first one, but avoiding pressure surface separation. The third one is also a hollow design with the same pressure surface as the second profile, but more aft loaded suction surface. The study is part of a wider ongoing research program covering the effects of the different design parameters on losses. The paper describes the experiments conducted in a low-speed linear cascade facility. It gathers together steady and unsteady loss measurements by wake traverse and surface pressure distributions for all the profiles. It is shown that thick profiles generate only around 90 percent of the losses of a thin-solid profile with the same suction surface. The results support the idea of an optimum axial position for the peak Mach number. Caution is recommended, as profile aft loading would not be a completely secure method for reducing losses.

Publisher

ASME International

Subject

Mechanical Engineering

Reference12 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3