Pressure and Suction Surfaces Redesign for High-Lift Low-Pressure
Turbines
Author:
González P.1, Ulizar I.1, Vázquez R.1, Hodson H. P.2
Affiliation:
1. ITP, Industria de Turbo Propulsores, Madrid, Spain 2. Whittle Laboratory, Cambridge University, Cambridge, U.K.
Abstract
Abstract
Nowadays there is a big effort toward improving the low-pressure turbine efficiency even to the extent of penalizing other relevant design parameters. LP turbine efficiency influences SFC more than other modules in the engine. Most of the research has been oriented to reduce profile losses, modifying the suction surface, the pressure surface, or the three-dimensional regions of the flow. To date, the pressure surface has received very little attention. The dependence of the profile losses on the behavior of both pressure and suction surfaces has been investigated for the case of a high-lift design that is representative of a modern civil engine LP turbine. The experimental work described in this paper consists of two different sets of experiments: the first one concluded an improved pressure surface definition, and the second set was oriented to achieve further improvement in losses modifying the profile suction surface. Three profiles were designed and tested over a range of conditions. The first profile is a thin-solid design. This profile has a large pressure side separation bubble extending from near the leading edge to midchord. The second profile is a hollow design with the same suction surface as the first one, but avoiding pressure surface separation. The third one is also a hollow design with the same pressure surface as the second profile, but more aft loaded suction surface. The study is part of a wider ongoing research program covering the effects of the different design parameters on losses. The paper describes the experiments conducted in a low-speed linear cascade facility. It gathers together steady and unsteady loss measurements by wake traverse and surface pressure distributions for all the profiles. It is shown that thick profiles generate only around 90 percent of the losses of a thin-solid profile with the same suction surface. The results support the idea of an optimum axial position for the peak Mach number. Caution is recommended, as profile aft loading would not be a completely secure method for reducing losses.
Publisher
ASME International
Subject
Mechanical Engineering
Reference12 articles.
1. Curtis, E. M., Hodson, H. P., Banieghbal, M. R.,
Howell, R. J., and Harvey, N. W., 1997, “Development of Blade Profiles for Low
Pressure Turbine Applications,” ASME J. Turbomach., 119, July. 2. Howell, R. J., Ramesh, O. N., Hodson, H. P., Harvey,
N. W., and Schulte, V., 2000, “High Lift and Aft Loaded Profiles for Low
Pressure Turbines,” ASME Paper No 2000-GT-0261, ASME Turbo Expo 2000, Munich,
May. 3. Cobley, K., Coleman, N., Siden, G., and Arndt, N.,
1997, “Design of New Three Stage Low Pressure Turbine for the BMW Rolls-Royce
BR715 Turbofan Engine,” ASME Paper No. 97-GT-419, Orlando, FL,
June. 4. Denton, J. D. 1999, “State of the Art and Future of
Turbine Technology,” Proc. International Gas Turbine Congress, Kobe. pp.
27–37. 5. Engber, M., and Fottner, L., 1995, “The Effect of
Incoming Wakes in Boundary Later Transition of a Highly Loaded Turbine Cascade,”
Paper No. 21, AGARD Conference. Loss Mechanisms and Unsteady Flows in
Turbomachinery, Derby, May.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|