Prediction of the Influence of the Inlet End-Wall Boundary Layer on the Secondary Flow of a Low Pressure Turbine Airfoil Using RANS and Large-Eddy Simulations

Author:

Gisbert Fernando1,Cadrecha David1,Apoita Patxi1

Affiliation:

1. ITP Aero , Alcobendas, Madrid 28108 , Spain

Abstract

Abstract This paper analyzes the effect of the inlet end-wall boundary layer on the secondary flow of a low pressure turbine airfoil cascade at Reynolds number 2 × 105 using RANS and implicit large-eddy simulations (LES). The results are compared against experimental data obtained at two low-speed linear cascade facilities, one located at the Whittle Laboratory of the University of Cambridge and the other at the Polytechnic University of Madrid. The RANS turbulence model is the k−ω−γ−Reθt and no sub-grid scale model has been used in the LES. An unstructured mesh of hexahedra and prisms is used, with high order elements used in the boundary layer region to better describe the airfoil shape in the LES. Two inlet end-wall boundary layers that produce different secondary flow patterns are analyzed: a laminar thin velocity profile and a turbulent thick velocity profile with several inlet turbulent intensities. The agreement between LES numerical predictions and experimental measurements of the position and intensity of the secondary vortices is very good for both cases. RANS simulations are much cheaper in terms of computational cost and reasonably predict most of the flow features, except when the inlet turbulence is low and turbulent transition prediction becomes critical. The effect of the inlet velocity profiles and inlet turbulence on the secondary flow structure is quite pronounced. The velocity profile thickness determines the spanwise penetration of the passage vortex, and different inlet turbulence intensities modify its mixing. Higher inlet turbulence intensities lead to a decrease of the secondary losses due to the passage vortex and an increase of end-wall losses.

Funder

Ministerio de Economía y Competitividad

Publisher

ASME International

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3