The Effect of Workpiece Hardness and Cutting Speed on the Machinability of AISI H13 Hot Work Die Steel When Using PCBN Tooling

Author:

Ng Eu-Gene1,Aspinwall David K.2

Affiliation:

1. University of Birmingham, School of Manufacturing and Mechanical Engineering, Edgbaston, Birmingham, B15 2TT, UK

2. University of Birmingham, School of Manufacturing and Mechanical Engineering, IRC in Materials for High Performance Applications, Edgbaston, Birmingham, B15 2TT, UK

Abstract

When machining hardened steel (⩾45 HRC) with polycrystalline cubic boron nitride (PCBN) tooling, the cutting speeds used produce high temperatures in the primary shear zone, which are sufficient to plasticize the workpiece. The paper initially reviews the effect of workpiece hardness and cutting speed on chip formation, workpiece surface integrity and cutting forces. Equations are detailed for determining the primary shear zone temperature, the proportion of heat conducted into the workpiece and the shear flow stress. Following on from this, experimental work is presented involving the orthogonal machining of AISI H13 hot work die steel with PCBN tooling. Tests were carried out over a range of cutting speeds with workpieces of different hardness, in order to provide cutting force, shear angle, chip morphology and primary shear zone thickness data. The shear flow stress decreased with increasing cutting speed and/or workpiece hardness. With the AISI H13 heat treated to 49±1 HRC, the stress magnitude changed more significantly with cutting speed and the proportion of heat conducted away from the workpiece approached 99 percent at 200 m/min. Shear localized chips were produced with white unetched layers due to intense heat generation followed by rapid cooling.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3