Mechanism Analysis of Falling Film Evaporation Two-Phase Flow in Narrow Channels

Author:

Guo Lei1,Hu Jing1,Zhang Shusheng2

Affiliation:

1. Fellow of School of Mechanical Engineering and Physics, Huaihua University , Huaihua 418000, China

2. Fellow of Institute of Thermal Science & Technology, Shandong University , Jinan 250001, China

Abstract

Abstract As an efficient heat and mass transfer technology, falling film evaporation has attracted more and more scholars' attention. In this paper, a falling film evaporation platform was established to discuss the mechanism of two-phase flow in narrow channels. The width of the channel varied from 0.5 to 2.0 mm. We focused on the relationship between heat transfer characteristics with flow patterns, channel width, and pressure loss. Three kinds of flow patterns were observed: bubble flow, restricted bubble flow, and dry area. In channels with the same width, the initial heat flux of subcooled evaporation increased linearly with the growth of flow rate. But at the same flow rate, the initial heat flux of subcooled evaporation decreased when the channel width became larger. The heat transfer coefficient on the wall was influenced by the bubble generation frequency and bubble separation diameter. Higher bubble generation frequency led to smaller bubble separation diameter. Through mathematical analysis, it was found that the heat transfer coefficient changed with the channel size. And a boundary was observed between the strengthening and weakening status. The comparison of theoretical and experimental values showed good agreement.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3