Multi-Objective Optimization of Air-Cooled Perforated Micro-Pin Fin Heat Sink Via an Artificial Neural Network Surrogate Model Coupled With NSGA-II

Author:

Gupta Deepa1,Saha Probir1,Roy Somnath2

Affiliation:

1. Indian Institute of Technology Patna Department of Mechanical Engineering, , Patna, Bihar 801106 , India

2. Indian Institute of Technology Kharagpur Department of Mechanical Engineering, , Kharagpur, West Bengal 721302 , India

Abstract

Abstract This research aims to create an artificial neural network (ANN) regression model for predicting the performance parameters of the perforated micro-pin fin (MPF) heat sinks for various geometric parameters and inflow conditions. A three-dimensional computational fluid dynamics (CFD) simulation system is developed to generate dataset samples under different operational conditions, which are specified using Latin hypercube sampling (LHS). An ANN model is first obtained by optimizing the model hyper-parameters, which are then deployed to learn from the input feature space that consists of perforation diameter, perforation location, and inflow velocity. For accurate training of the ANN, the model is trained over a range of uniformly distributed data points in the input feature space. The developed multi-layer model predicted Nusselt number and friction factor with the mean absolute percentage error of 4.45% and 1.80%, respectively. Subsequently, the developed surrogate model is used in the optimization study to demonstrate the application of the surrogate model. A multi-objective non-dominated sorting genetic algorithm (NSGA-II) is used to perform the optimization of the perforation location, diameter, and inflow conditions. Negative of the Nusselt number and friction factor are chosen as objectives to minimize. A Pareto front is obtained from the optimization study that shows a set of optimal solutions. Thermal performance of the perforated MPF is increased between 11.5% and 39.77%. The optimizer selected a significantly smaller hole diameter at a higher location and a faster speed to maximize the Nusselt number and minimize the friction factor.

Funder

Department of Information Technology, Ministry of Communications and Information Technology

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3