A Simple Configuration of an Actively Synthesized Gyroscopic-Nonreciprocal Acoustic Metamaterial

Author:

Zhou H.1,Baz A.1

Affiliation:

1. University of Maryland Department of Mechanical Engineering, , College Park, MD 20742

Abstract

Abstract A simple configuration of an active nonreciprocal gyroscopic metamaterial (NGMM) is presented. In the proposed NGMM system, a one-dimensional acoustic cavity is provided with piezoelectric boundaries acting as a collocated pair of sensors and actuators. The active piezo-boundaries are controlled by a simple control algorithm that synthesizes a virtual gyroscopic control action to impart desirable nonreciprocal characteristics which are tunable both in magnitude and phase. The dynamic model of a prototype of the NGMM cell is experimentally identified in an attempt to provide means for predicting the characteristics of the virtual gyroscopic controller for various control gains during forward and backward propagations. The theoretical predictions are validated experimentally without the need for any physical dynamic controller which was provided, in earlier studies, by using a dummy NGMM cell. Such a simplified arrangement enables the fast execution of the controller with enhanced frequency bandwidth capabilities. The experimental and theoretical characteristics of the NGMM cell are monitored and predicted for different control gains in order to evaluate its behavior for both forward and backward propagations. The obtained experimental results are compared with the theoretical predictions and found to be in close agreement. The presented concepts provide the foundation necessary for the implementation of NGMM that can be employed in more complex 2D and 3D critical structures in order to achieve nonreciprocal behavior in a simple and programmable manner.

Publisher

ASME International

Subject

General Engineering

Reference27 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3