Linear Dynamic Coupling in Geared Rotor Systems

Author:

David J. W.1,Mitchell L. D.2

Affiliation:

1. Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, N.C.

2. Mechanical Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, Va.

Abstract

The ability to analyze accurately the torsional-axial-lateral coupled response of geared systems is the key to the prediction of dynamic gear forces, shaft moments and torques, dynamic reaction forces, and moments at all bearing points. These predictions can, in turn, be used to estimate gear-tooth lives, shaft lives, housing vibrational response, and noise generation. Typical applications would be the design and analysis of gear drives in heavy-lift helicopters, industrial speed reducers, Naval propulsion systems, and heavy, off-road equipment. In this paper, the importance of certain linear dynamic coupling terms on the predicted response of geared rotor systems is addressed. The coupling terms investigated are associated with those components of a geared system that can be modeled as rigid disks. First, the coupled, nonlinear equations of motion for a disk attached to a rotating shaft are presented. The conventional argument for ignoring these dynamic coupling terms is presented and the error in this argument is revealed. It is shown that in a geared system containing gears with more than about 50 teeth, the magnitude of some of the dynamic-coupling terms is potentially as large as the magnitude of the linear terms that are included in most rotor analyses. In addition, it is shown that the dynamic coupling terms produce the multi-frequency responses seen in geared systems. To quantitatively determine the effects of the linear dynamic-coupling terms on the predicted response of geared rotor systems, a trial problem is formulated in which these effects are included. The results of this trial problem shows that the inclusion of the linear dynamic-coupling terms changed the predicted response up to eight orders of magnitude, depending on the response frequency. In addition, these terms are shown to produce sideband responses greater than the unbalanced response of the system.

Publisher

ASME International

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic behaviour of three-dimensional planetary geared rotor systems;Mechanism and Machine Theory;2019-04

2. Vibration of high speed helical geared shaft systems mounted on rigid bearings;International Journal of Mechanical Sciences;2018-07

3. Dynamics of low speed geared shaft systems mounted on rigid bearings;Mechanism and Machine Theory;2017-06

4. Torsional damping of a back-to-back gearbox rig: Experimental measurements and frequency domain modelling;Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics;2002-06-01

5. A non-linear mathematical model for dynamic analysis of spur gears including shaft and bearing dynamics;Journal of Sound and Vibration;1991-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3