Affiliation:
1. University of Western Australia Department of Mechanical and Materials Engineering 35 Stirling Highway, Crawley, WA 6009, Australia
Abstract
This paper is concerned with the experimental measurement and modelling of the torsional damping levels of a back-to-back gearbox rig. The aims of the investigation were to experimentally measure and analyse modal damping levels for the first nine torsional natural frequencies; to optimize damping parameters for modelling and to assess any limitations of the models for future work. Standard signal processing methods were used to determine modal damping levels from measured torsional frequency responses, with good confidence in the results. A damping sensitivity analysis for the two frequency domain receptance (FDR) models was used to determine optimum damping parameter values. Damping levels for six of nine natural frequencies were well matched with the experimental data. Discrepancies at other frequencies were attributed mainly to torsional-transverse coupling, present in the rig but not the model. Analysis of results for the ninth natural frequency determined a very low level of damping for the gearbox. It was also concluded that the model parameters may be used with confidence in a time domain receptance model for future investigations related to the test gearbox damping.
Subject
Mechanical Engineering,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献