Impingement Cooling of Electronics

Author:

Hollworth B. R.1,Durbin M.2

Affiliation:

1. Division of Mechanical Engineering, Alfred University, Alfred, NY 14802

2. Mechanical Engineering Department, Gonzaga University, Spokane, WA 98124

Abstract

Experiments were conducted to determine the performance of a system of low-velocity air jets used to cool a simulated electronics package. The test model consisted of a uniform array of rectangular elements mounted to a circuit board. Each element was cooled by a cluster of four jets, and the spent fluid was vented at one end of the channel formed between the circuit board and the plate from which the jets were discharged. Reported are measurements of system pressure drop and convective heat transfer coefficients for elements at various sites within the array. Results indicate that (for the geometry tested) the largest portion of the total pressure drop occurs across the jet orifices. Further, the crossflow of spent air appears to enhance heat transfer for those elements near the exit end of the channel.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on coolant selection for thermal management of electronics and implementation of multiple-criteria decision-making approach;Applied Thermal Engineering;2024-05

2. Flow characterization in the downhill region of a pulsed oblique round jet;Physical Review Fluids;2023-05-18

3. Effect of effusion hole arrangement on jet array impingement heat transfer;International Journal of Heat and Mass Transfer;2022-08

4. Flow characterization in the uphill region of pulsed oblique round jet;Physics of Fluids;2022-03

5. Supersonic Nitrogen and Helium Jet Impingement on a Flat Stationary Surface;Proceeding of Proceedings of CONV-22: Int. Symp. on Convective Heat and Mass Transfer June 5 – 10, 2022, Turkey;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3