Experimental and Finite Element Modal Analysis of a Pliant Elastic Membrane for Micro Air Vehicles Applications

Author:

Chakravarty Uttam Kumar12,Albertani Roberto3

Affiliation:

1. Mem. ASME

2. School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332

3. Department of Mechanical and Aerospace Engineering, Research and Engineering Education Facility, University of Florida, Shalimar, FL 32579

Abstract

This paper investigates the modal characteristics of a latex membrane for micro air vehicles applications. Finite element (FE) models are developed for characterizing the latex membrane at dynamic loading and validated by experimental results. The membrane at different pre-tension levels is attached to a circular steel ring, mounted on a shaker, and placed inside the vacuum chamber for modal characterization using a scanning laser Doppler vibrometer (LDV). The experimental modal analysis is conducted by imposing a structural excitation to the ring for investigating the membrane vibration characteristics at both atmospheric and reduced pressures in a vacuum chamber. FE models are developed for the natural frequencies of the membrane at different uniform and non-uniform pre-tension levels with the effect of the added mass of air. The Mooney-Rivlin hyperelastic material model is selected for the membrane. The natural frequencies of the membrane computed by experimental and FE models are correlated well, although discrepancy is expected among experimental and FE results within reasonable limits due to the variation of the thickness of the membrane. The natural frequencies increase with the mode and pre-tension level of the membrane but decrease due to an increase in ambient pressure. The damping ratios have very minimal effect on the frequencies due to low values but help to reduce the amplitude of vibration. Natural frequencies of the membrane do not change with the uniform and non-uniform nature of the pre-tension, although they increase with the pre-tension level. It is also found that the effect of added mass on the natural frequencies increases with an increase of the size of the membrane specimen.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3