Configuration Design and Dynamic Characteristics Analysis for Space Membrane Mechanism Based on Deployable Booms

Author:

Tang Yuzhen1ORCID,Guo Hongwei1,Zhang Wenyao1,Wang Zhiyi2,Xie Chao2,Liu Rongqiang1

Affiliation:

1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China

2. Space Structure and Mechanism Technology Laboratory of China Aerospace Science and Technology Group Co., Ltd., Shanghai 201108, China

Abstract

To meet the requirements of deployable structures in aerospace engineering with light weight and high stiffness, this paper proposes the triangular space membrane deployable mechanism based on deployable booms, then conducts dynamic analysis and multiobjective optimization. The configuration design and mass calculation for the membrane mechanism are carried out, including its unfolding support mechanism and tensioned membrane scheme. With a view to performing the dynamic characteristics analysis and parametric studies, the finite element simulation model of the membrane mechanism, including boom, cable and membrane, is built and validated against test results obtained by Polytec. On the basis of the simulation results, a surrogate model of fundamental frequency is established by adopting the response surface method and applied to multiobjective optimization combined with the mass formula. Then, the optimal dynamic and lightweight design parameters are solved via the genetic algorithm. The results provide an indication to aid with the design and analysis of space membrane deployable mechanisms according to the required properties and space mission requirements.

Funder

National Natural Science Foundations of China

Open Project of Space Structure and Mechanism Technology Laboratory of China Aerospace Science and Technology Group Co., Ltd.

China Scholarship Council

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wrinkle-free membranes through spatioselective exposure;Journal of the Mechanics and Physics of Solids;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3