Finless Heat Sinks, High Performance and Low Cost for Low Profile Cooling Applications

Author:

Walsh Ed1,Grimes Ronan,Walsh Patrick,Stafford Jason2

Affiliation:

1. Stokes Institute, University of Limerick, Castletroy, Limerick, Ireland; Osney Thermo-Fluids Laboratory, Department of Engineering Science, University of Oxford, Southwell Building, Osney Mead, Oxford, OX2 0ES, UK e-mail:

2. Stokes Institute, University of Limerick, Castletroy, Limerick, Ireland

Abstract

The need for low profile, sustainable thermal management solutions is becoming critical in information and communications technology applications ranging from consumer products to server cabinets. This work presents a finless thermal management solution that utilizes fluidic structures generated within an empty cavity to enhance the heat transfer coefficient. The finless thermal management solution can be manufactured to have a height of less than 5 mm when using low profile motors. Particle image velocimetry (PIV) combined with infrared (IR) imaging techniques are used to explain the underlying flow physics that results in increased heat transfer rates compared to typical laminar flows. It is found that the local heat transfer coefficients in the finless design are up to 500% greater than those achieved at the same Reynolds number using conventional boundary layer theory. The design is compared to an existing commercial solution and is found to provide benefits in terms of cost, reliability, weight, acoustics, and fan power consumption. These advancements over current state of the art lead to a more sustainable solution for low cost, low profile cooling applications.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3