Affiliation:
1. Department of Mechanical Engineering, University of Illinois at Chicago, Chicago, Ill. 60680
Abstract
This paper presents the geometric stiffening effects and the complete nonlinear interaction between elastic and rigid body motion in the study of constrained multibody dynamics. A recursive formulation (or direct path approach) of the equations of motion based on Kane’s equations, finite element method and modal analysis techniques is presented. An extended matrix formulation of the partial angular velocities and partial velocities for flexible (elastic) bodies is also developed and forms the basis for our analysis. Closed loops and kinematical constraints (specified motions) are allowed and their corresponding Jacobian matrices are fully developed. The constraint equations are appended onto the governing equations of motion by representing them in a minimum dimension form using an innovative method called the Pseudo-Uptriangular Decomposition method. Examples are presented to illustrate the method and procedures proposed.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献