Nonlinear Modeling of Flexible Multibody Systems Dynamics Subjected to Variable Constraints

Author:

Ider S. K.1,Amirouche F. M. L.1

Affiliation:

1. Department of Mechanical Engineering, University of Illinois at Chicago, Chicago, Ill. 60680

Abstract

This paper presents the geometric stiffening effects and the complete nonlinear interaction between elastic and rigid body motion in the study of constrained multibody dynamics. A recursive formulation (or direct path approach) of the equations of motion based on Kane’s equations, finite element method and modal analysis techniques is presented. An extended matrix formulation of the partial angular velocities and partial velocities for flexible (elastic) bodies is also developed and forms the basis for our analysis. Closed loops and kinematical constraints (specified motions) are allowed and their corresponding Jacobian matrices are fully developed. The constraint equations are appended onto the governing equations of motion by representing them in a minimum dimension form using an innovative method called the Pseudo-Uptriangular Decomposition method. Examples are presented to illustrate the method and procedures proposed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3