A Single Formulation for Uncertainty Propagation in Turbomachinery: SAMBA PC

Author:

Ahlfeld Richard1,Montomoli Francesco2

Affiliation:

1. Uncertainty Quantification Lab, Department of Aeronautics, Imperial College of London, London SW7 2AZ, UK

2. Uncertainty Quantification Lab, Department of Aeronautics, Imperial College of London, London SW7 2AZ, UK e-mail:

Abstract

This work newly proposes an uncertainty quantification (UQ) method named sparse approximation of moment-based arbitrary polynomial chaos (SAMBA PC) that offers a single solution to many current problems in turbomachinery applications. At the moment, every specific case is characterized by a variety of different input types such as histograms (from experimental data), normal probability density functions (PDFs) (design rules) or fat tailed PDFs (for rare events). Thus, the application of UQ requires the adaptation of ad hoc methods for each individual case. A second problem is that parametric PDFs have to be determined for all inputs. This is difficult if only few samples are available. In gas turbines, however, the collection of statistical information is difficult, expensive, and having scarce information is the norm. A third critical limitation is that if using nonintrusive polynomial chaos (NIPC) methods, the number of required simulations grows exponentially with increasing numbers of input uncertainties: the so-called “curse of dimensionality.” It is shown that the fitting of parametric PDFs to small data sets can lead to large bias and the direct use of the available data is more accurate. This is done by propagating uncertainty through several test functions and the computational fluid dynamics (CFD) simulation of a diffuser, highlighting the impact of different PDF fittings on the output. From the results, it is concluded that the direct propagation of the experimental data set is preferable to the fit of parametric distributions if data is scarce. Thus, the suggested method offers an alternative to the maximum entropy theorem to handle scarce data. SAMBA simplifies the mathematical procedure for many different input types by basing the polynomial expansion on moments. Its moment-based expansion automatically takes care of arbitrary combinations of different input data. It is also numerically efficient compared to other UQ implementations. The relationship between the number of random variables and number of simulation is linear (only 21 simulations for ten input random variables are required). It is shown in this paper that SAMBA's algorithm can propagate a high number of input distributions through a set of nonlinear analytic test functions. Doing this, the code needs a very small number of simulations and preserve a 5% error margin. SAMBA's flexibility to handle different forms of input distributions and a high number of input variables is shown on a low-pressure turbine (LPT) blade-based on H2 profile. The relative importance of manufacturing errors in different location of the blade is analyzed.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3