Uncertainty Quantification and Conjugate Heat Transfer: A Stochastic Analysis

Author:

Montomoli F.,D’Ammaro A.1,Uchida S.2

Affiliation:

1. Whittle Laboratory, University of Cambridge, Cambridge, CB3 0DY, UK

2. Takasago Research & Development Center, Mitsubishi Heavy Industries, Takasago, 676-8686, Japan

Abstract

Conjugate heat transfer is gaining acceptance for predicting the thermal loading in high pressure nozzles. Despite the accuracy nowadays of numerical solvers, it is not clear how to include the uncertainties associated to the turbulence level, the temperature distribution, or the thermal barrier coating thickness in the numerical simulations. All these parameters are stochastic even if their value is commonly assumed to be deterministic. For the first time, in this work a stochastic analysis is used to predict the metal temperature in a real high-pressure nozzle. The domain simulated is the high pressure nozzle of an F-type Mitsubishi Heavy Industries gas turbine. The complete coolant system is included: impingement, film, and trailing edge cooling. The stochastic variations are included by coupling uncertainty quantification methods and conjugate heat transfer. Two uncertainty quantification methods have been compared: a probabilistic collocation method (PCM) and a stochastic collocation method (SCM). The stochastic distribution of thermal barrier coating thickness, used in the simulations, has been measured at the midspan. A Gaussian distribution for the turbulence intensity and hot core location has been assumed. By using PCM and SCM, the probability to obtain a specific metal temperature at midspan is evaluated. The two methods predict the same distribution of temperature with a maximum difference of 0.6%, and the results are compared with the experimental data measured in the real engine. The experimental data are inside the uncertainty band associated to the CFD predictions. This work shows that one of the most important parameters affecting the metal temperature uncertainty is the pitch-wise location of the hot core. Assuming a probability distribution for this location, with a standard deviation of 1.7 deg, the metal temperature at midspan can change up to 30%. The impact of turbulence level and thermal barrier coating thickness is 1 order of magnitude less important.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3