Transfer Function Calculations for Aeroengine Combustion Oscillations

Author:

Zhu M.1,Dowling A. P.2,Bray K. N. C.2

Affiliation:

1. Department of Thermal Engineering, Tsinghua University, Beijing 100084, China

2. Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

Abstract

Combustors with fuel-spray atomizers are particularly susceptible to a low-frequency oscillation at idle and subidle conditions. For aeroengine combustors, the frequency of this oscillation is typically in the range 50–120 Hz and is commonly called “rumble.” The mechanism involves interaction between the plenum around the burner and the combustion chamber. Pressure variations in the plenum or the combustor alter the inlet air and fuel spray characteristics, thereby changing the rate of combustion. This in turn leads to local “hot spots” which generate pressure oscillations as they convect through the downstream nozzle. In order to eliminate the combustion oscillations, it is essential to determine which fuel atomizers are particularly likely to lead to instability by quantifying their sensitivity to flow perturbations. This can be done by identifying the system through understanding the transfer function, which represents the relationship between the unsteadiness of combustion and the inlet fuel and air. In the present work, various types of signals are applied to produce a small change in the inlet fuel and air flow rates, the response in the rate of heat release caused downstream was calculated and stored for subsequent analysis. Afterwards, the system transfer function is calculated by determining the coefficients of an IIR filter (Infinite Impulse Response) for which the output signal is the downstream heat release rate and the input signal is the inlet flow rate. The required transfer function then follows from the Fourier transform of this relationship. The resulting transfer functions are compared with those obtained by the forced harmonic oscillations at a fixed given frequency. Suitably chosen input signals accurately recover the results for harmonic forcing at a single frequency, but also give detailed information about the combustor response over a wide frequency range. There are two distinct forms to the low-frequency quasisteady response. In the primary zone, the rate of combustion is influenced by the turbulence and is enhanced when the inlet air velocity is large. Near the edge of combustion zone, the rate of combustion depends on the mixture fraction and is high when the mixture fraction is close to the stoichiometric value. This generates ‘hot spots’ which convect into the dilution zone. At higher frequencies, the combustion lags this quasi-steady response through simple lag-laws and the relevant time delays have been identified.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3