Identification of flame transfer function and mechanism analysis of the influence of boundary impedance characteristics on thermoacoustic instability

Author:

Chen Jingzhen1,Du Jingtao1ORCID,Liu Yang1ORCID,Liu Long1

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin, China

Abstract

Thermoacoustic instability is a common problem in the operation of modern gas turbines. The prediction of thermoacoustic instability and the clarification of its mechanism are the research focus and difficulty in the gas turbine industry. As a response function of flame to acoustic disturbance, flame transfer function is a key parameter in the study of thermoacoustic instability. In this paper, based on the scaled adaptive simulation (SAS) model combined with the eddy dissipation concept (EDC) combustion model, the time-domain flow field data are processed by the system identification method, and the results of flame transfer function extraction are in good agreement with the experimental values. Then, the detailed derivation process of the low-order thermoacoustic network model (LOTAN) is given to capture the behavior characteristics of the acoustic wave in the thermoacoustic system. On this basis, the effects of acoustic boundary conditions and hysteresis time on the thermoacoustic instability of the combustion system are analyzed, and the relationship between the mode shape, pressure, vibration velocity phase, and thermoacoustic instability is explored. It is found that the phase relationship between pressure and vibration mode can be used to determine the thermoacoustic instability of the system. This is of great practical significance for determining the thermoacoustic instability of the system and clarifying the internal mechanism of its generation and provides theoretical support for the subsequent thermoacoustic instability control.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3