Models for the Prediction of Transients in Closed Regenerative Gas Turbine Cycles With Centrifugal Impellers

Author:

Korakianitis Theodosios1,Vlachopoulos N. E.2,Zou D.3

Affiliation:

1. University of Glasgow, Glasgow G12 8QQ, UK

2. Panafon SA, Athens, Greece

3. Department of Physical Therapy, Washington University, St Louis, MO 63130

Abstract

This paper presents transient-flow component models for the prediction of the transient response of gas turbine cycles. The application is to predict the transient response of a small solar-powered regenerative gas-turbine engine with centrifugal impellers. The component sizes are similar to those under consideration for the solar-powered Space Station, but the models can easily be generalized for other applications with axial or mixed-flow turbomachinery. New component models for the prediction of the propagation of arbitrary transients in centrifugal impellers are developed. These are coupled with component models for the heat exchangers, receiver and radiator. The models are based on transient applications of the principles of conservation of mass, energy, and momentum. System transients driven by sinusoidal and double-step inputs in receiver salt temperature are presented and discussed. The new turbomachinery models and their coupling to the heat-exchanger models simulates disturbance-propagation in the components both upstream and downstream from the point of generation. This permits the study of the physical mechanisms of generation and propagation of higher-frequency contents in the response of the cycle.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gas Turbine Arekret-Cycle Simulation Modeling for Training and Educational Purposes;Journal of Nuclear Engineering and Radiation Science;2019-08-02

2. An all-condition simulation model of the steam turbine system for a 600 MW generation unit;Journal of the Energy Institute;2018-04

3. Experimental Study of Transient Nitric Oxide, Smoke, and Combustion Noise Emissions during Acceleration of an Automotive Turbocharged Diesel Engine;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2010-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3