Gas Turbine Arekret-Cycle Simulation Modeling for Training and Educational Purposes

Author:

Osigwe Emmanuel O.1,Pilidis Pericles1,Nikolaidis Theoklis1,Sampath Suresh1

Affiliation:

1. Power Propulsion Engineering Center, Cranfield University, Bedford, Bedfordshire MK43 0AL, UK

Abstract

This paper presents the modeling approach of a multipurpose simulation tool called gas turbine Arekret-cycle simulation (GT-ACYSS); which can be utilized for the simulation of steady-state and pseudo transient performance of closed-cycle gas turbine plants. The tool analyzes the design point performance as a function of component design and performance map characteristics predicted based on multifluid map scaling technique. The off-design point is analyzed as a function of design point performance, plant control settings, and a wide array of other off-design conditions. GT-ACYSS can be a useful educational tool since it allows the student to monitor gas path properties throughout the cycle without laborious calculations. It allows the user to have flexibility in the selection of four different working fluids, and the ability to simulate various single-shaft closed-cycle configurations, as well as the ability to carry out preliminary component sizing of the plant. The modeling approach described in this paper has been verified with case studies and the trends shown appeared to be reasonable when compared with reference data in the open literature, hence, can be utilized to perform independent analyses of any referenced single-shaft closed-cycle gas turbine plants. The results of case studies presented herein demonstrated that the multifluid scaling method of components and the algorithm of the steady-state analysis were in good agreement for predicting cycle performance parameters (such as efficiency and output power) with mean deviations from referenced plant data ranging between 0.1% and 1% over wide array of operations.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Reference45 articles.

1. Osigwe, E. O., Li, Y. G., Sampath, S., Jombo, G., and Indarti, D., 2017, “Integrated Gas Turbine System Diagnostics: Components and Sensor Fault Quantification Using Artificial Neural Network,” 23rd ISABE Conference Proceedings, Manchester, UK, Sept. 3–8, Paper No. ISABE-2017-2605.https://www.researchgate.net/publication/319645027_Integrated_Gas_Turbine_System_Diagnostics_Components_and_Sensor_Faults_Quantification_using_Artificial_Neural_Network

2. Performance Prediction and Simulation of Gas Turbine Engine Operation for Aircraft, Marine, Vehicular, and Power Generation;NATO RTO,2007

3. GSP, a Generic Object-Oriented Gas Turbine Simulation Environment,2000

4. Advanced User-Friendly Gas Turbine Performance Calculations on a Personal Computer,1995

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3