Tribological Behavior of Mg/Fe3O4 Recycled Nanocomposites Processed Through Turning Induced Deformation Technique

Author:

Pasha Mahammod Babar1,Narasimha Rao R.1,Ismail Syed1,Tekumalla Sravya2,Gupta Manoj2

Affiliation:

1. National Institute of Technology Warangal Department of Mechanical Engineering, , Warangal, Telangana 506004 , India

2. National University of Singapore Department of Mechanical Engineering, , 9 Engineering Drive 1, Singapore 117576

Abstract

Abstract Magnesium nanocomposites with improved mechanical and tribological properties have attracted widespread interest in the automotive sector. Given the great potential of magnesium nanocomposites in the automotive sector and the need for recycling materials to minimize their negative impact on the environment, it is imperative to consider the possibility of a practical approach to recycling these materials. In this study, turning induced deformation (TID) technique is used to recycle the magnesium composites containing iron oxide (Fe3O4) nanoparticles. The chips collected from the turning process of composites were cold compacted and hot extruded into cylindrical rods. The extruded materials were investigated for their tribological response under dry sliding conditions. The wear tests were performed using a pin on disc tribometer against an EN31 alloy steel counter disc under applied loads of 10, 20, 30, and 50 N and sliding speeds of 1, 2, 3, and 5 m/s. The worn pin surfaces were examined under scanning electron microscopy integrated with an energy dispersive x-ray spectrometer to understand wear characteristics. The results revealed a better wear resistance and friction coefficient for recycled nanocomposites than pure magnesium. The enhanced wear resistance of recycled nanocomposites is attributed to the increased hardness and strength due to the Fe3O4 nanoparticles and the turning induced deformation process. The wear surfaces revealed abrasion and delamination as the predominant wear mechanism, with thermal softening occurring only at the highest applied load and sliding speed.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3