Wear Mechanisms of Untreated and Gamma Irradiated Ultra-High Molecular Weight Polyethylene for Total Joint Replacements

Author:

Zhou J.1,Komvopoulos K.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

Modification of the surface microstructure of ultra-high molecular weight polyethylene (UHMWPE) is essential for improving the wear resistance of orthopedic implants. A common approach is to cross-link the polymer by gamma irradiation. The objective of this study was to examine the tribological behaviors of untreated and gamma irradiated UHMWPE under physiologically relevant contact conditions. Emphasis was placed on the identification of the dominant wear mechanisms in the early stage of polymer wear. The irradiation dose exhibited a strong effect on the tribological properties of UHMWPE sliding against Co–Cr alloy in a bath of bovine serum. Transmission electron microscopy (TEM) and environmental scanning electron microscopy (ESEM) were used to examine the microstructure and morphology of the worn surfaces. Regularly spaced folds with average spacing depending on the irradiation dose (i.e., cross-link density) formed on the wear tracks. Surface folding was related to plastic flow and the degree of mobility of the crystalline lamellae. SEM and TEM results elucidated the roles of the cross-link density and crystalline lamellae in the wear process. Based on the experimental evidence, a deformation model was obtained that provides explanation for the dependence of surface folding on the cross-link density and lamellae reorientation during sliding.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3