Modeling of Free Convection Heat Transfer to a Supercritical Fluid in a Square Enclosure by the Lattice Boltzmann Method

Author:

Varmazyar Mostafa1,Bazargan Majid1

Affiliation:

1. Department of Mechanical Engineering, K.N. Toosi University of Technology, 1999143344, Tehran, Iran

Abstract

During the last decade, a number of numerical computations based on the finite volume approach have been reported, studying various aspects of heat transfer near the critical point. In this paper, a lattice Boltzmann method (LBM) has been developed to simulate laminar free convection heat transfer to a supercritical fluid in a square enclosure. The LBM is an ideal mesoscopic approach to solve nonlinear macroscopic conservation equations due to its simplicity and capability of parallelization. The lattice Boltzmann equation (LBE) represents the minimal form of the Boltzmann kinetic equation. The LBE is a very elegant and simple equation, for a discrete density distribution function, and is the basis of the LBM. For the mass and momentum equations, a LBM is used while the heat equation is solved numerically by a finite volume scheme. In this study, interparticle forces are taken into account for nonideal gases in order to simulate the velocity profile more accurately. The laminar free convection cavity flow has been extensively used as a benchmark test to evaluate the accuracy of the numerical code. It is found that the numerical results of this study are in good agreement with the experimental and numerical results reported in the literature. The results of the LBM-FVM (finite volume method) combination are found to be in excellent agreement with the FVM-FVM combination for the Navier–Stokes and heat transfer equations.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3