Author:
Lu Shihua,Zhu Jianqi,Gao Dongyan,Chen Weiwei,Li Xinjun
Abstract
Purpose
This study aims to show the importance of natural convection of supercritical fluid in an inclined cavity. The heat transfer performance of natural convection can be improved.
Design/methodology/approach
A model of an inclined cavity was set up to simulate the natural convection of supercritical fluid. The influence of inclined angles (30 to approximately 90°) and pressures (8 to approximately 12 MPa) are analyzed. To ascertain flow and heat transfer of supercritical fluid natural convection, this paper conducts a numerical investigation using the lattice Boltzmann method (LBM), which is proven to be precise and convenient.
Findings
The results show that the higher heat transfer performance can be obtained with an inclined angle of 30°. It is also presented that the heat transfer performance under pressure of 10 MPa is the best. In addition, common criterion number correlations of average Nusselt number are also fitted.
Originality/value
These study results can provide a theoretical reference for the study of heat transfer of supercritical fluid natural convection in engineering.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献