Functional Validation of a Complex Loading Whole Spinal Segment Bioreactor Design

Author:

Beatty Amanda M.1,Bowden Anton E.1,Bridgewater Laura C.2

Affiliation:

1. Department of Mechanical Engineering, Brigham Young University, 435 Crabtree Building, Provo, UT 84602 e-mail:

2. Department of Microbiology and Molecular Biology, Brigham Young University, 4007 Life Sciences Building, Provo, UT 84602 e-mail:

Abstract

Intervertebral disk (IVD) degeneration is a prevalent health problem that is highly linked to back pain. To understand the disease and tissue response to therapies, ex vivo whole IVD organ culture systems have recently been introduced. The goal of this work was to develop and validate the design of a whole spinal segment culturing system that loads the disk in complex loading similar to the in vivo condition, while preserving the adjacent endplates and vertebral bodies. The complex loading applied to the spinal segment (flexion–extension (FE), bilateral bending, and compression) was achieved with three pneumatic cylinders rigidly attached to a triangular loading platform. A culture container housed the spinal segment and was attached to the loading mechanism, which allowed for loading of the spinal segment. The dynamic bioreactor was able to achieve physiologic loading conditions with 100 N of applied compression and approximately 2–4 N · m of applied torque. The function of the bioreactor was validated through testing of bovine caudal IVDs with intact endplates and vertebral bodies that were isolated within 2 hrs of death and cultured for 14 days. The resulting IVD cell viability following 14 days of loading was much higher than unloaded control IVDs. The loading system accurately mimicked FE, bilateral bending, and compression motions seen during daily activities. The results indicate that this complex dynamic bioreactor may be appropriate for extended preclinical testing of vertebral-mounted spinal devices and therapies.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3