A Novel Fiber-Reinforced Poroviscoelastic Bovine Intervertebral Disc Finite Element Model for Organ Culture Experiment Simulations

Author:

Ristaniemi Aapo1,Šećerović Amra1,Grad Sibylle1ORCID,Ferguson Stephen J.2

Affiliation:

1. AO Research Institute Davos , Clavadelerstrasse 8 , Davos 7270, Switzerland

2. Institute for Biomechanics, ETH Zürich , Hönggerbergring 64 , Zürich 8093, Switzerland

Abstract

Abstract Intervertebral disc (IVD) degeneration and methods for repair and regeneration have commonly been studied in organ cultures with animal IVDs under compressive loading. With the recent establishment of a novel multi-axial organ culture system, accurate predictions of the global and local mechanical response of the IVD are needed for control system development and to aid in experiment planning. This study aimed to establish a finite element model of bovine IVD capable of predicting IVD behavior at physiological and detrimental load levels. A finite element model was created based on the dimensions and shape of a typical bovine IVD used in the organ culture. The nucleus pulposus (NP) was modeled as a neo-Hookean poroelastic material and the annulus fibrosus (AF) as a fiber-reinforced poroviscoelastic material. The AF consisted of 10 lamella layers and the material properties were distributed in the radial direction. The model outcome was compared to a bovine IVD in a compressive stress-relaxation experiment. A parametric study was conducted to investigate the effect of different material parameters on the overall IVD response. The model was able to capture the equilibrium response and the relaxation response at physiological and higher strain levels. Permeability and elastic stiffness of the AF fiber network affected the overall response most prominently. The established model can be used to evaluate the response of the bovine IVD at strain levels typical for organ culture experiments, to define relevant boundaries for such studies, and to aid in the development and use of new multi-axial organ culture systems.

Funder

AO Foundation

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3