Tool/Chip Interfacial Friction Analysis in Atomistic Machining of Polycrystalline Coppers

Author:

Shi Jing1,Ji Chunhui2,Wang Yachao3,Hsueh-Ming Wang Steve4

Affiliation:

1. Mem. ASME Department of Industrial and Manufacturing Engineering, North Dakota State University, Dept. 2485, PO Box 6050, Fargo, ND 58108 e-mail:

2. School of Mechanical Engineering, Tianjin University, Nankai District, Tianjin 300072, China e-mail:

3. Department of Industrial and Manufacturing Engineering, North Dakota State University, Dept. 2485, PO Box 6050, Fargo, ND 58108 e-mail:

4. Department of Engineering Science Project Management, University of Alaska Anchorage, Anchorage, AK 99508 e-mail:

Abstract

Three-dimensional (3D) molecular dynamics (MD) simulation is performed to study the tool/chip interface friction phenomenon in machining of polycrystalline copper at atomistic scale. Three polycrystalline copper structures with the equivalent grain sizes of 12.25, 7.72, and 6.26 nm are constructed for simulation. Also, a monocrystalline copper structure is simulated as the benchmark case. Besides the grain size, the effects of depth of cut, cutting speed, and tool rake angle are also considered. It is found that the friction force and normal force distributions along the tool/chip interface in both polycrystalline and monocrystalline machining exhibit similar patterns. The reduction in grain size overall increases the magnitude of normal force along the tool/chip interface, but the normal forces in all polycrystalline cases are smaller than that in the monocrystalline case. In atomistic machining of polycrystalline coppers, the increase of depth of cut consistently increases the normal force along the entire contact area, but this trend cannot be observed for the friction force. In addition, both higher cutting speed and more negative tool rake angle do not bring significant changes to the distributions of normal and friction forces on the interface, but both factors tend to increase the magnitudes of the two force components.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3