Experimental Study on the Thermal Performance of the Shape-Stabilized Phase Change Material Floor Used in Passive Solar Buildings

Author:

Zhang Yinping1,Xu Xu1,Di Hongfa1,Lin Kunping1,Yang Rui2

Affiliation:

1. Department of Building Science, Tsinghua University, Beijing, 100084, P. R. C.

2. Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. C.

Abstract

The novel shape-stabilized phase change material (PCM) has the following salient features: large apparent specific heat for the phase change temperature region, suitable thermal conductivity, and the ability to keep the shape stabilized when it undergoes a phase change. In this technical brief, we put forward a kind of shape-stabilized PCM floor that is able to absorb solar radiation energy in the daytime and to release the heat at night in winter. The thermal performance of a prototype room using such a floor was studied. The experiments show that the mean indoor temperature of a room with the PCM floor is about 2°C higher than that of the room without a PCM floor, and the indoor temperature swing range is obviously minimized. Therefore, installing shape-stabilized PCM in a room may increase the degree of thermal comfort and reduce space heating energy consumption in winter. In addition, the experimental results provide data for modeling and simulation research for such PCM floor systems.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3