Thermal Performance Optimization Simulation Study of a Passive Solar House with a Light Steel Structure and Phase Change Walls

Author:

Cheng Lei1,Zhuang Chunlong1,Li Shengbo1,Huang Guangqin1,Zhang Hongyu1,Gan Fei1,Xu Ningge1,Hou Shanshan1

Affiliation:

1. Department of Military Installations, Army Logistics Academy of PLA, Chongqing 401331, China

Abstract

Phase change materials are used in passive solar house construction with light steel structure walls, which can overcome the problems of weak heat storage capacity and poor utilization of solar heat and effectively solve the thermal defects of light steel structure walls. Based on this, on the basis of preliminary experimental research, this study further carried out theoretical analysis and simulation research on the thermal performance of a light steel structure passive solar house (Trombe form) with PCM walls. Through the heat balance analysis of heat transfer in the heat collecting partition wall, the theoretical calculation formula of the phase change temperature of the PCM was obtained, and it verified theoretically that the phase change temperature value should be 1–3 °C higher than the target indoor air temperature. The evaluation index “accumulated daily indoor temperature offset value” was proposed for evaluating the effect of phase change materials on the indoor temperature of the passive solar house, and “EnergyPlus” software was used to study the influence of the phase change temperature, the amount of material, and the thickness of the insulation layer on the indoor air temperature in a natural day. The results showed that there was a coupling relationship among the performance and between of the thickness of the PCM layer and the phase change temperature. Under typical diurnal climate conditions in the northern Tibetan Plateau of China, the optimal combination of the phase change temperature and the layer thickness was 17 °C and 15 mm, respectively. Especially at a certain temperature, excessive increases in the thickness of the phase transition layer could not improve the indoor thermal environment. For this transition temperature, there exists an optimal transition layer thickness. For a Trombe solar house, the thickness of the insulation layer has an independent impact on indoor temperature compared to other factors, which has an economic value, such as 50 mm in this case. In general, this paper studied the relationship between several important parameters of the phase change wall of a solar house by using numerical simulation methods and quantitatively calculated the optimal parameters under typical meteorological conditions, thus providing a feasible simulation design method for similar engineering applications.

Funder

the Project of Chongqing Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3