On the Mechanical Modeling of Functionally Graded Interfacial Zone With a Griffith Crack: Anti-Plane Deformation

Author:

Wang Y.-S.1,Huang G.-Y.1,Dross D.2

Affiliation:

1. Institute of Engineering Mechanics, Northern Jiaotong University, Beijing, 100044, People’s Republic of China

2. Institute of Mechanics, Technical University of Darmstadt, Hochschulstr 1, D-64289, Darmstadt, Germany

Abstract

An analytical model is developed for a functionally graded interfacial zone between two dissimilar elastic solids. Based on the fact that an arbitrary curve can be approached by a continuous broken line, the interfacial zone with material properties varying continuously in an arbitrary manner is modeled as a multilayered medium with the elastic modulus varying linearly in each sublayer and continuous on the interfaces between sublayers. With this new multilayered model, we analyze the problem of a Griffith crack in the interfacial zone. The transfer matrix method and Fourier integral transform technique are used to reduce the mixed boundary-value problem to a Cauchy singular integral equation. The stress intensity factors are calculated. The paper compares the new model to other models and discusses its advantages.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3