A Design Method to Improve End-of-Use Product Value Recovery for Circular Economy

Author:

Cong Liang1,Zhao Fu23,Sutherland John W.3

Affiliation:

1. School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088 e-mail:

2. School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088;

3. Environmental and Ecological Engineering, Purdue University, 500 Central Drive, West Lafayette, IN 47907-2022

Abstract

Circular economy (CE) is being increasingly accepted as a promising sustainable business model, supporting waste minimization through product life cycles. The product end-of-use (EOU) stage is the key to circulate materials and components into a new life cycle, rather than direct disposal. The economic viability of recycling EOU products is significantly affected by designers' decisions and largely determined during product design. Low economic return of EOU value recovery is a major barrier to overcome. To address this issue, a design method to facilitate EOU product value recovery is proposed. First, product EOU scenarios are determined by optimization of EOU component flows. The EOU scenario depicts which modules (groups of components) will be allocated for reuse, recycling, or disposal, the order of joint detachment (the joints for modules connection), and recovery profit. Second, in the given study, bottlenecks, improvement opportunities, and design suggestions will be identified and provided following the EOU scenario analysis. Pareto analysis is used for ranking joints, according to their detachment cost and for indicating which joints are the most suitable for replacement. An analytic hierarchy process (AHP) is employed to select the best joint candidate with trade-off among criteria from the perspective of disassembly. In addition, disposal and recycling modules are checked to eliminate hazardous material and increase material compatibility. A value-based recycling indicator is developed to measure recyclability of the modules and evaluate design suggestions for material selection. Finally, based on heuristics, the most valuable and reusable modules will be selected for reconfiguration so that they can be easily accessed and disassembled. A hard disk drive is used as a case study to illustrate the method.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3