Control-Oriented Order Reduction of Finite Element Model

Author:

Yae K. Harold1,Inman Daniel J.2

Affiliation:

1. Department of Mechanical Engineering, Center for Simulation and Design Optimization, The University of Iowa, Iowa City, IA 52242

2. Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Abstract

In the dynamics modeling of a structure, finite element analysis employs reduction techniques, such as Guyan’s reduction, that remove some of the “insignificant” physical coordinates, that is, degrees of freedom at a node point. Despite such reduction, the resultant model is still too large for control design. This warrants further reduction as is frequently done in control design by approximating a large dynamical system with a fewer number of state variables. A problem, however, arises because a model usually undergoes, before being reduced, some form of coordinate transformations that destroy the physical meanings of the states. To correct such a problem, we developed a method that expresses a reduced model in terms of a subset of the original states. The proposed method starts with a dynamic model that is originated and reduced in finite element analysis. The model is then converted to a state-space form, and reduced further by the internal balancing method. At this stage, being in the balanced coordinate system, the states in the reduced model have no apparent resemblance to those of the original model. Through another coordinate transformation that is developed in this paper, however, this reduced model is expressed by a subset of the original states, so that the states in the reduced model can be related to the degrees of freedom of the nodes in the original finite element model.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3