Heat Transfer Coefficients Around Cylinders in Crossflow in Combustor Exhaust Gases

Author:

Dils R. R.1,Follansbee P. S.1

Affiliation:

1. Pratt & Whitney Aircraft Division, United Technologies Corp., East Hartford, Conn.

Abstract

The local heat-transfer coefficient at the surface of a component placed in combustor exhaust gases can be determined from an analysis of surface temperature oscillations induced by fluctuations of the exhaust-gas temperature. Within a prescribed bandwidth, the relative amplitudes of the Fourier components of the gas and surface temperature waves are a simple function of the local heat-transfer coefficient and the thermal properties of the component. This method of measuring the local heat-transfer coefficient is described in this paper and heat transfer coefficients measured around small cylinders in crossflow (Re = 4000–20,000) are reported. Measurements of the transient response of cylinders abruptly placed in the exhaust-gas stream were conducted to determine the accuracy of the wide bandwidth method. Wide bandwidth gas temperatures and velocities and their cross correlations in the combustor exit were measured to characterize the large-scale exhaust-gas dynamics. It is shown that the stagnation line heat-transfer coefficients are uniformly higher than those obtained in low-turbulence cold gas streams; the magnitude of the stagnation line Nusselt number increases with the measured turbulent intensity. Away from the stagnation line in the unseparated region, the dependence of the local heat-transfer coefficients on the angle from the stagnation line is in agreement with earlier data measured in cold gas streams.

Publisher

ASME International

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3