Turbulent velocity and pressure fluctuations in gas turbine combustor exit flows

Author:

Lubbock RJ1,Oldfield MLG1

Affiliation:

1. Department of Engineering Science, University of Oxford, UK

Abstract

This paper presents the results of two test programmes using novel instrumentation to characterise the pressure and turbulent velocity fields in gas-turbine combustor exit flows. The probes are uncooled, therefore a fast-insertion traverse system is employed to prevent thermal degradation of the instrumentation in these severely hostile high-temperature environments. High-bandwidth ultra-miniature pressure transducers are used to measure unsteady total pressure, whilst a Pitot tube is employed to measure time-averaged total pressure. The probes are 4 mm in diameter with a measurement bandwidth of the order of 100 kHz. In the first test programme, the probes are used to characterise the streamwise turbulent velocity field approximately two axial chords downstream of an uncooled single-stage turbine in a turbojet engine. Established data reduction methods and calibration against a hot-wire are used to obtain turbulent velocity fluctuations from unsteady total pressure measurements. Comprehensive turbulence results are presented including time-histories, power spectra, intensities, and lengthscales obtained at four-engine conditions and at two radial and two circumferential measurement locations. In the second test programme the probes are demonstrated in an industrial combustor rig, featuring a can combustor with swirler nozzle and no dilution holes, at temperatures up to 1500 K. Static pressure fluctuations are obtained up to 100 kHz, and some typical combustor spectral features are identified.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3