Numerical Investigation of Auto-Ignition Characteristics in Microstructured Catalytic Honeycomb Reactor for CH4–Air and CH4–H2–Air Mixtures

Author:

Kayed H.1,Mohamed A.1,Yehia M.1,Nemitallah M. A.2,Habib M. A.3

Affiliation:

1. Mechanical Power Department, Cairo University, Giza 12613, Egypt

2. TIC in CCS and Mechanical Engineering Department, Faculty of Engineering, KFUPM, Dhahran 31261, Saudi Arabia e-mail:

3. TIC in CCS and Mechanical Engineering Department, Faculty of Engineering, KFUPM, Dhahran 31261, Saudi Arabia

Abstract

Stable ranges of auto-ignition for the microcombustion of CH4 and CH4–H2 mixtures are identified numerically in a platinum-coated microcatalytic honeycomb reactor. Steady and transient simulations under pseudo-auto-thermal conditions were performed to investigate the coupling phenomenon between combustion and heat transfer in such microburner using ANSYS 17.2 coupled with a detailed chemkin reaction mechanism. The model was validated utilizing the available data in the literature on a similar microreactor, and the results showed good agreements. A certain amount of heat is furnished from outside at constant temperature from an external electric furnace to investigate the variations of localized self-ignition temperature while changing the flow rate and mixture strength. It was found that the ignition temperature for CH4–air mixtures is not affected by the mass flow rate. However, the ignition temperature of CH4–H2 air mixtures decreases while increasing the flow rate. The effect of equivalence ratio was studied to demonstrate the variations of flammability limits of the present microreactor. The equivalence ratio required for auto-ignition of CH4–air mixtures was found to be in the range from 0.4 up to 0.85 at a flow rate of 9.5 g/s. The reaction front moved from upstream to downstream under transient conditions matching with the reported experimental behavior in the literature.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3