Role of Oxidizer Mixture Composition on Stabilizing Stratified Oxy-Flames in Dual Lean Premixed Combustors for Gas Turbines

Author:

Nemitallah Medhat A.123,Hamzat Abdulhammed K.4,Ismaila Kehinde G.4

Affiliation:

1. King Fahd University of Petroleum and Minerals IRC- Hydrogen and Energy Storage and Aerospace Engineering Department, ;

2. KFUPM SDAIA-KFUPM Joint Research Center for Artificial Intelligence (JRC-AI), ; , Dhahran 31261 , Saudi Arabia

3. Researcher at K.A. CARE Energy Research & Innovation Center at Dhahran SDAIA-KFUPM Joint Research Center for Artificial Intelligence (JRC-AI), ; , Dhahran 31261 , Saudi Arabia

4. King Fahd University of Petroleum and Minerals Department of Mechanical Engineering, , Dhahran 31261 , Saudi Arabia

Abstract

Abstract This study investigates the effects of oxidizer composition on stability and combustion and emission characteristics of stratified premixed CH4-O2-CO2 flames in a dual annular counter-rotating swirl (DACRS) burner for wider near blowout operability of gas turbines. Flame stratification was achieved by dividing the incoming reactants into primary and secondary streams of different oxygen fractions (OF). The effects of primary and secondary OFs (primary OFs: 60%, 50%, and 30%; and secondary OFs: 60%, 50%, 40%, and 30%) were numerically investigated at fixed inlet throat velocities and equivalence ratios (φ) of the primary and the secondary streams of 6 m/s and 2 m/s and of 0.9 and 0.55, respectively. The probability distribution function has been used to average the thermochemical properties and reaction rates. Two distinct flame shapes, the v-shaped and the conical-shaped were identified as a function of the oxidizer composition. V-shaped flames with enhanced flow mixing, strong inner and outer recirculation zones (IRZ and ORZ), and intensive interactions between both streams at lower Damkohler number (Da) were recorded for OFs within 30–50%. This indicates the ability of the DACRS burner to extend the lean blowout limit by holding stratified stable flames of lower OFs. The flame shape turned into a conical shape at OFs of 60–60% for both streams, the IRZ disappeared, intensive reaction rates of higher Da attained, and the flashback mechanism approached. Weak flame/flow interactions were observed at OFs higher than 50% with excessive combustion temperature near the burner tip. CH4 disappeared very close to the burner tip, indicating fast reactions.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference43 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3