Light Activated Shape Memory Polymer Characterization

Author:

Beblo Richard V.1,Weiland Lisa Mauck1

Affiliation:

1. Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261

Abstract

Since their development, shape memory polymers (SMPs) have been of increasing interest in active materials and structures design. In particular, there has been a growing interest in SMPs for use in adaptive structures because of their ability to switch between low and high stiffness moduli in a relatively short temperature range. However, because a thermal stimulus is inappropriate for many morphing applications, a new light activated shape memory polymer (LASMP) is under development. Among the challenges associated with the development of a new class of material is establishing viable characterization methods. For the case of LASMP both the sample response to light stimulus and the stimulus itself vary in both space and time. Typical laser light is both periodic and Gaussian in nature. Furthermore, LASMP response to the light stimulus is dependent on the intensity of the incident light and the time varying through the thickness penetration of the light as the transition progresses. Therefore both in-plane and through-thickness stimulation of the LASMP are nonuniform and time dependent. Thus, the development of a standardized method that accommodates spatial and temporal variations associated with mechanical property transition under a light stimulus is required. First generation thick film formulations are found to have a transition time on the order of 60 min. The characterization method proposed addresses optical stimulus irregularities. A chemical kinetic model is also presented capable of predicting the through-thickness evolution of Young’s modulus of the polymer. This work discusses in situ characterization strategies currently being implemented as well as the current and projected performance of LASMPs.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3