Affiliation:
1. University of California Department of Mechanical Engineering, , Berkeley CA 94720
Abstract
Abstract
This paper introduces a novel design method that enhances the force/torque, bendability, and controllability of soft pneumatic actuators (SPAs). The complex structure of the soft actuator is simplified by approximating it as a cantilever beam. This allows us to derive approximated nonlinear kinematic models and a dynamical model, which is explored to understand the correlation between natural frequency and dimensional parameters of SPA. The design problem is then transformed into an optimization problem, using kinematic equations as the objective function and the dynamical equation as a constraint. By solving this optimization problem, the optimal dimensional parameters are determined. Six prototypes are manufactured to validate the proposed approach. The optimal actuator successfully generates the desired force/torque and bending angle, while its natural frequency remains within the constrained range. This work highlights the potential of using optimization formulation and approximated nonlinear models to boost the performance and dynamical properties of soft pneumatic actuators.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献