Numerical Study of a Single-Sided Vibro-Impact Track Nonlinear Energy Sink Considering Horizontal and Vertical Dynamics

Author:

Li Wenke1,Wierschem Nicholas E.2,Li Xinhui1,Yang Tiejun1,Brennan Michael J.3

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, No. 145, Nantong Street, Harbin 150001, China

2. Department of Civil and Environmental Engineering, University of Tennessee, John D. Tickle Bldg., Knoxville, TN 37996

3. Department of Mechanical Engineering, Universidade Estadual Paulista (UNESP), Av. Brasil Centro, Ilha Solteira, SP 15385-000, Brazil

Abstract

Abstract In this paper, the single-sided vibro-impact track nonlinear energy sink (SSVI track NES) is studied. The SSVI track NES, which is attached to a primary structure, has nonlinear behavior caused by the NES mass moving on a fixed track and impacting on the primary structure at an impact surface. Unlike previous studies of the SSVI track NES, both the horizontal and vertical dynamics of the primary structure are considered. A numerical study is carried out to investigate the way in which energy is dissipated in this system. Assuming a track shape with a quartic polynomial, an optimization procedure that considers the total energy dissipated during a time period is carried out, to determine the optimum NES mass and track parameter. It is found that there is dynamic coupling between the horizontal and vertical directions caused by the SSVI track NES motion. The vibrational energy, originally in the structure in the horizontal direction, is transferred to the vertical motion of the structure where it is dissipated. Considering that many civil and mechanical systems are particularly vulnerable to extreme loads in the horizontal direction, this energy transformation can be beneficial to prevent or limit damage to the structure. The effect on energy dissipation of the position of the impact surface in the SSVI track NES and the ratio of the vertical to horizontal stiffness in the primary structure are discussed. Numerical results demonstrate a robust and stable performance of the SSVI track NES over a wide range of stiffness ratios.

Funder

Natural Science Foundation of China

Publisher

ASME International

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3