Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture

Author:

Vakakis A. F.1,Gendelman O.2

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois, 1206 W. Green Street, Urbana, IL 61801

2. Institute of Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, 117977 Moscow, Russia

Abstract

We study energy pumping in an impulsively excited, two-degrees-of-freedom damped system with essential (nonlinearizable) nonlinearities by means of two analytical techniques. First, we transform the equations of motion using the action-angle variables of the underlying Hamiltonian system and bring them into the form where two-frequency averaging can be applied. We then show that energy pumping is due to resonance capture in the 1:1 resonance manifold of the system, and perform a perturbation analysis in an Oε neighborhood of this manifold in order to study the attracting region responsible for the resonance capture. The second method is based on the assumption of 1:1 internal resonance in the fast dynamics of the system, and utilizes complexification and averaging to develop analytical approximations to the nonlinear transient responses of the system in the energy pumping regime. The results compare favorably to numerical simulations. The practical implications of the energy pumping phenomenon are discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 514 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3