Analytical Modeling of Calcium Carbonate Deposition for Laminar Falling Films and Turbulent Flow in Annuli: Part I—Formulation and Single-Species Model

Author:

Chan S. H.1,Ghassemi K. F.1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin—Milwaukee, Milwaukee, WI 53201

Abstract

This is a two-part series to model scaling of heat transfer surfaces by calcium carbonate based on the first conservation principle approach. In Part I, general physical and chemical processes in CaCO3 fouling are described and a single-species model is proposed whereby only Ca+2 species transport needs to be of concern. The deposition process is assumed to be controlled by the two processes of mass transport to and crystallization reaction on the heat transfer surface. The model is then used to solve for CaCo3 scaling in a laminar falling film system and to assess which of the two types of prevailing reaction rate expressions is more appropriate for the CaCO3 fouling analysis. The predicted deposition rate, scale thickness, and its profile are compared with experimental data. The comparison shows that the single-species model yields satisfactory predictions only for a limited range of concentrations. It reveals that the type of reaction rate expression used in the single-species model is less accurate than the other type used in the multispecies model. The latter is described in Part II of the series.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3