Lease-Oriented Opportunistic Maintenance for Multi-Unit Leased Systems Under Product-Service Paradigm

Author:

Xia Tangbin1,Xi Lifeng2,Pan Ershun3,Fang Xiaolei4,Gebraeel Nagi4

Affiliation:

1. Mem. ASME State Key Laboratory of Mechanical System and Vibration, Department of Industrial Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive, Atlanta, GA 30332 e-mails: ;

2. State Key Laboratory of Mechanical System and Vibration, Department of Industrial Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

3. State Key Laboratory of Mechanical System and Vibration, Department of Industrial Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

4. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive, Atlanta, GA 30332

Abstract

With many industries increasingly relying on leased equipment and machinery, many original equipment manufacturers (OEMs) are turning to product-service packages where they deliver (typically lease) the physical assets. An integrated service contract will be offered for the asset. A classic example being Rolls Royce power-by-the-hour aircraft engines. Service contracts offered by original equipment manufacturers have predominantly focused on maintenance and upkeep activities for a single asset. Interestingly enough, manufacturing industries are beginning to adopt the product-service paradigm. However, one of the unique aspects in manufacturing settings is that the leased system is often not a single asset but instead a multi-unit system (e.g., an entire production line). In this paper, we develop a lease-oriented maintenance methodology for multi-unit leased systems under product-service paradigm. Unlike traditional maintenance models, we propose a leasing profit optimization (LPO) policy to adaptively compute optimal preventive maintenance (PM) schedules that capture the following dynamics: (1) the structural dependencies of the multi-unit system, (2) opportunistic maintenance of multiple system components, and (3) leasing profit savings (LPSs). We demonstrate the performance of our multi-unit maintenance policy by using a leased automotive manufacturing line and investigate its impact on leasing profits.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3