Investigation of the Effect of Inlet Turbulence and Reynolds Number on Developing Duct Flow

Author:

Tuna Burak A.1,Yarusevych Serhiy1,Li Xianguo2,Ren Yi3,Shi Fanghui3

Affiliation:

1. Mem. ASME Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue W, Waterloo, ON, N2 L 3G1, Canada e-mail:

2. Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue W, Waterloo, ON, N2 L 3G1, Canada e-mail:

3. GM Global Propulsion Systems General Motors Company, 823 Joslyn Avenue, Pontiac, MI 48340 e-mail:

Abstract

This study investigates experimentally the effects of upstream flow conditions and Reynolds number on a developing duct flow. Particle image velocimetry (PIV) and hot-wire (HW) anemometry are employed to explore the flow dynamics in a rectangular duct with an aspect ratio of 2 and a length of 40 hydraulic diameters (Dh). Experiments are employed for two Reynolds numbers, ReDh = 17,750 and 35,500 where the inlet turbulence intensity is controlled using different turbulence grids. The results show that the inlet turbulence intensity and Reynolds number have a substantial effect on the flow evolution, the onset of shear layer interaction zone, and the subsequent relaxation to the fully developed flow. The main effect is linked to the development of the boundary layer, as the turbulence intensity decays rapidly in the core flow. The detailed analysis indicates that transition to turbulence advances upstream as the inlet turbulence intensity is increased, leading to an earlier onset of shear layer interaction and the decrease in entrance length. A similar upstream advancement of laminar-to-turbulent transition is induced as the Reynolds number is increased. However, a delay in the onset of shear layer interaction regime is observed at higher Reynolds number due to lower overall boundary layer growth rate. Thus, the focus of the analysis characterization of the boundary layer development and quantification of the associated changes in the duct flow development.

Funder

Natural Sciences and Engineering Research Council of Canada

Ontario Centres of Excellence

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3