Measurement and Microstructural Evaluation of Creep-Induced Changes in Magnetic Properties of a 410 Stainless Steel

Author:

Polar A.1,Indacochea J. E.1,Wang M. L.1,Singh V.1,Lloyd G.1

Affiliation:

1. University of Illinois at Chicago, Chicago, Illinois

Abstract

There is a compelling desire by power generating plants to continue running existing stations and components for several more years, despite many of them have surpassed their design service life. The idea is to avoid premature retirement, on the basis of the so-called design life, because actual useful life could often be well in excess of the design life. This can most readily be achieved by utilizing nondestructive monitoring methods to monitor the degradation of the microstructure, either when a station is down for maintenance or preferably when it is under operation. This study evaluates the use of quasi static hysteresis measurements as a possible procedure to evaluate creep in a 410 martensitic stainless steel, a material utilized in power plant components. The creep rupture tests were conducted at stresses of 100 and 200 MPa, temperatures of 500°C and 620°C, and the times varied between 48 and 120 hours. Following the creep tests all specimens were evaluated magnetically and then metallurgically by optical and scanning electron microscopy, x-ray diffraction (XRD) and by energy dispersive spectroscopy (EDS). The microstructural changes were compared with the magnetization changes. It was determined that the changes in the hysteresis curves were clearly detectable and correlated with the creep-induced damage.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3