Accelerated Creep Life Assessment of In-Service Power Plant Components

Author:

Aldajah Saud Hamad,Mazedul Kabir Mohammad,Al-Haik Mohammad Y.

Abstract

Structural metals used in plant components are subject to aging from a combination of fatigue, creep, and corrosion. Exposure to elevated temperatures promotes creep. Aged metals lose toughness, or the ability to absorb energy at stress above the yield point and cannot endure an occasional high load without fracturing. Creep is one of the most critical factors for determining the structural integrity of components. The main objective of the current study is to assess the remaining creep life of various 20-year old power plant engineering components such as the high temperature fasteners. Due to time constraints, the approach followed in this study was to utilize the accelerated high temperature creep testing in addition to Scanning Electron Microscopy (SEM) analysis to assess the remaining life of 4 different samples. The accelerated high temperature creep tests were conducted at a stress level of 61 MPa and at a temperature of 1000°C for samples Sample 1 (original), Sample 2, Sample 3 and Sample 4; these samples were collected from different parts of the power plant. SEM analysis was carried out for all the samples. The results of the accelerated high temperature tests were compared to similar materials’ theoretical creep data using Larson Miller curve. The Larson Miller actual creep lives of the tested samples were much higher than the experimental ones, which suggest that the samples are critically aged. SEM analysis on the other hand, showed that all samples have high percentage of creep voids

Publisher

EDP Sciences

Subject

General Medicine

Reference10 articles.

1. Damage mechanism and life assessment of high temperature components. (1989). ASM International, Metals Park (OH). R. Viswanathan. p. 59.

2. Dooley R.B., & Viswanathan R.. (1987).Proceedings of the conference of ERPICS5208, Electric Power Research Institute, Palo Alto (CA).

3. Raj B., Moorthy V., Jayakumar T., & Bhanu Sankara R.K.. (2003). Int Mater Rev 48, p. 273.

4. Nondestructive characterization of materials (ultrasonic and micromagnetic techniques) for strength and toughness prediction and the detection of early creep damage

5. Accuracy requirements for life assessment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3