Vibration of Flexible Structures Under Nonlinear Boundary Conditions

Author:

Mao Xiao-Ye1,Ding Hu1,Chen Li-Qun2

Affiliation:

1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, 149 Yan Chang Road, Shanghai 200072, China e-mail:

2. Shanghai Key Laboratory of Mechanics in Energy Engineering, Department of Mechanics, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, 149 Yan Chang Road, Shanghai 200072, China e-mail:

Abstract

The nonlinear response of a flexible structure, subjected to generally supported conditions with nonlinearities, is investigated for the first time. An analytical procedure is proposed first. Moreover, a simulation technique usually employed in static analysis is developed for confirmation. Generally, ordinary perturbation methods could analyze dynamics of flexible structures with linear boundary conditions. As nonlinear boundaries are taken into account, they are out of operation for the modal shape that is hardly to be obtained, which is the key to the analysis. In order to overcome this, nonlinear boundary conditions are rescaled and the technique of modal revision is employed. Consequently, each governing equation with different time-scales could be analyzed exactly according to corresponding rescaled boundary conditions. The total response of any point at the flexible structure will be composed by harmonic responses yielded by the analytical method. Furthermore, the differential quadrature element method (DQEM), a numerical simulation technique could satisfy boundary conditions strictly, is introduced to certify analytical results. The comparison shows a reasonable agreement between these two methods. In fact, the accuracy of the analytical method for nonlinear boundaries could be explained in theory. Based on the certification, boundary nonlinearities are discussed in detail analytically and found to play an important role in responses. Because of the important role played by the nonlinear factors in the vibration and control of the flexible structure, this paper will open the vibration analysis and numerical study of the flexible structure with nonlinear constraints.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3