Elastodynamic Analysis of Underground Structural Failures Induced by Seismic Body Waves

Author:

Uenishi Koji1

Affiliation:

1. Research Center for Urban Safety and Security, Kobe University 1-1 Rokko-dai, Nada, Kobe 657-8501, Japan

Abstract

Scattering of elastic waves by structural inhomogeneities such as cylindrical cavities has been a subject of intensive study for decades. The time-harmonic elastodynamic analysis making use of the wave function expansions is one of the typical approaches for such problems, and since it gives semianalytical solutions that may show the effect of parameters of the problem rather explicitly, it is still repeatedly used in the study of dynamic response of elastic structures including inhomogeneities. Here, motivated by the observation of the unique underground structural failure patterns caused by the 1995 Hyogo-ken Nanbu (Kobe), Japan, earthquake, we analyze scattering of a plane harmonic body wave by a uniformly lined circular tunnel (cylinder), and from the structural failure patterns we evaluate possible mechanical characteristics of the associated incident seismic waves. In the two-dimensional, in-plane time-harmonic elastodynamic model employed, the lined circular tunnel may be located at a finite depth from an approximate flat free surface of a homogeneous isotropic linear elastic medium (half-space), and the plane wave impinges upon the tunnel at an arbitrary incident angle. We compare the effect of P and SV wave incidences by calculating the dynamic amplification of stresses and displacements around this simplified tunnel, and also show the influence of the wavelength and the incident angle of the plane wave, the overburden thickness, and the relative compliance of the linear elastic lining with respect to the surrounding medium. The results suggest that the observed underground structural failures, the exfoliation of the lining concrete and buckling of the reinforcing steel bars on the sidewall as well as the detachment of the subgrade from the invert, might have been induced by the incidence of P waves in a relatively high frequency range.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference26 articles.

1. Recent Developments in Rock Mechanics as Applied to Earthquake Dynamics;Uenishi;Geomech. Tunnelling

2. Damage to Tunnels in the October 23, 2004 Chuetsu Earthquake;Konagai;JSCE J. Earthq. Eng.

3. Dynamical Stress Concentration in an Elastic Plate;Pao;ASME J. Appl. Mech.

4. Dynamic Stresses in an Elastic Cylinder;Mow;J. Eng. Mech. Div.

5. Multiple Scattering of Elastic Waves by Parallel Cylinders;Cheng;ASME J. Appl. Mech.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3