Gas Jet–Workpiece Interactions in Laser Machining

Author:

Chen Kai1,Yao Y. Lawrence1,Modi Vijay1

Affiliation:

1. Department of Mechanical Engineering, Columbia University, New York, NY 10027

Abstract

Laser machining efficiency and quality are closely related to gas pressure, nozzle geometry, and standoff distance. Modeling studies of laser machining rarely incorporate gas effects in part because of the complex structure and turbulent nature of jet flow. In this paper, the interaction of a supersonic, turbulent axisymmetric jet with the workpiece is studied. Numerical simulations are carried out using an explicit, coupled solution algorithm with solution-based mesh adaptation. The model is able to make quantitative predictions of the pressure, mass flow rate as well as shear force at the machining front. Effect of gas pressure and nozzle standoff distance on structure of the supersonic shock pattern is studied. Experiments are carried out to study the effect of processing parameters such as gas pressure and standoff distance. The measured results are found to match and hence validate the simulations. The interaction of the oblique incident shock with the normal standoff shock is found to contribute to a large reduction in the total pressure at the machining front and when the nozzle pressure is increased beyond a certain point. The associated reduction in flow rate, fluctuations of pressure gradient and shear force at the machining front could lower the material removal capability of the gas jet and possibly result in a poorer surface finish. The laser cutting experiments show that the variation of cut quality are affected by shock structures and can be represented by the mass flow rate. [S1087-1357(00)01702-0]

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3