OPTIMIZATION OF LASER CUTTING PROCESS PARAMETERS ON SS347 USING GRA AND TOPSIS

Author:

SRINIVASAN D.1,RAMAKRISHNAN H.1,BALASUNDARAM R.2,RAVICHANDRAN M.1

Affiliation:

1. Department of Mechanical Engineering, K. Ramakrishnan College of Engineering, Samayapuram, Tiruchirappalli 621112, Tamil Nadu, India

2. Department of Mechanical Engineering, SRM Institute of Science and Technology, Irungalur, Tiruchirappalli Campus 621105, Tamil Nadu, India

Abstract

Laser cutting is a one of the efficient manufacturing processes in industry to cut the hard materials by vaporizing. Stainless steel (SS347) is the most popular material for many applications due its unique characteristics such as efficiency to retain good strength with no inter-granular corrosion even at elevated temperatures. However, the cutting or machining of this material is very difficult. On the other side, the machining cost of laser process is high when compared with other processes. In this work, GRA and TOPSIS techniques are used to study the laser cutting process parameters of SS347. The obtained results were compared with the data mining approach. The input parameters are power, speed, pressure and stand-off distance (SOD) and the output responses of surface roughness, machining time and HAZ are considered. The set of experiments were constructed by using the Taguchi’s L9 method. The predicted closeness value of TOPSIS is greater than the GRA technique and the predominant factor observed is SOD followed by pressure, speed and power. In this work, C4.5-decision tree algorithm is applied to find the most influential parameter. It also represents the low-level knowledge of data set into high level knowledge (If-Then rules form). This investigation reveals that both TOPSIS and data mining suggested the SOD as predominant factor. This result of the optimized process parameters supports the laser assisted manufacturing industries by providing optimized output. Better results were obtained using the optimized set of parameters with the machining time, HAZ and surface roughness being 7.83 s, 0.09 mm and 0.86 [Formula: see text]m, respectively. The results of this work would be very useful for automobiles and aircrafts industries where SS347 is highly employed.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3