Experimental Determination of Liquefied Petroleum Gas–Gasoline Mixtures Knock Resistance

Author:

Pipitone Emiliano1,Genchi Giuseppe1

Affiliation:

1. Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo, Viale delle Scienze, Palermo 90128, Italy e-mail:

Abstract

The results of previous experimental researches showed that great advantages can be achieved, both in terms of fuel consumption and pollutant emissions, in bifuel vehicles by means of the double-fuel combustion, i.e., the simultaneous combustion of gasoline and a gaseous fuel, such as liquefied petroleum gas (LPG) or natural gas (NG). The substantial increase in knock resistance pursued by adding LPG to gasoline, which allowed to maintain an overall stoichiometric proportion with air also at full load, is not documented in the scientific literature and induced the authors to perform a proper experimental campaign. The motor octane number (MON) of LPG–gasoline mixtures has been hence determined on a standard cooperative fuel research (CFR) engine, equipped with a double-fuel injection system in order to realize different proportions between the two fuels and electronically control the overall air–fuels mixture. The results of the measurement show a quadratic dependence of the MON of the mixture as function of the LPG concentration evaluated on a mass basis, with higher increase for the lower LPG content. A good linear relation, instead, has been determined on the basis of the evaluated LPG molar fraction. The simultaneous combustion of LPG and gasoline may become a third operative mode of bifuel vehicles, allowing to optimize fuel economy, performances, and pollutant emissions; turbocharged bifuel engines could strongly take advantage of the knock resistance of the fuels mixture thus adopting high compression ratio (CR) both in pure gas and double-fuel mode, hence maximizing performance and reducing engine size. The two correlations determined in this work, hence, can be useful for the design of future bifuel engines running with knock safe simultaneous combustion of LPG and gasoline.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference32 articles.

1. Performance and Emission Improvement of a S.I. Engine Fuelled by LPG/Gasoline Mixtures,2010

2. Performances Improvement of a S.I. CNG Bi-Fuel Engine by Means of Double-Fuel Injection,2009

3. Correlation of Autoignition Phenomenon in Internal Combustion Engines and Rapid Compression Machines;Symp. (Int.) Combust.,1955

4. Four-Octane-Number Method for Predicting the Anti-Knock Behavior of Fuels and Engines,1978

5. On Knocking Prediction in Spark Ignition Engines;Combust. Flame,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3