Effects of Dimethyl Ether and Propane Blends on Knocking Behavior in a Boosted SI Engine

Author:

Soto Lian1,Han Taehoon2,Boehman Andre L.3

Affiliation:

1. University of Michigan, Department of Mechanical Engineering, USA Universitat Politènica de València, Spain

2. University of Michigan, Department of Mechanical Engineering, USA University of Suwon, Department of Mechanical Engineering, South Korea

3. University of Michigan, Department of Mechanical Engineering, USA

Abstract

<div>Dimethyl ether (DME) is an alternative fuel that, blended with propane, could be an excellent alternative for exploring the use of fuels from renewable sources. DME–propane blends are feasible for their comparable physicochemical properties; these fuels may be pressured as liquids using moderate pressure at ambient temperature. Adding a proportion of DME with a low octane number to a less reactive fuel like propane can improve the combustion process. However, the increased reactivity of the mixture induced by the DME could lead to the early appearance of knocking, and this tendency may even be pronounced in boosted SI engines. Hence, this study experimentally analyzes the effect of E10 gasoline (baseline) and DME–propane blends, with varying proportions of DME in propane ranging from 0% to 30% by weight, in increments of 5% on knocking tendency, combustion characteristics, gaseous emissions, and particle number concentration, under different intake pressure conditions (0.8, 0.9, 1.0, and 1.1 bar) in an SI engine. The results show that as the proportion of DME in the propane blend rises, the knocking tendency becomes more pronounced. That behavior intensifies with increasing intake pressure, but with 20% DME in the propane blend, reaching the maximum brake torque (MBT) without knocking in the four boosted conditions is feasible. The presence of knock limited the advance of combustion phasing and decreased the gross indicated thermal efficiency (ITEg) with E10 gasoline and 25% and 30% DME in propane blends under 1.0 and 1.1 bar boosted conditions. In these knock-limited circumstances, the NOx emissions decreased due to the retarded phasing, and THC and PN emissions increased due to the lower combustion stability, considerably raising the concentration of accumulation mode particles in the particle size distribution (PSD) compared to the other fuel blends tested.</div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3